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ABSTRACT
In this paper, minimization problems in Ll(lf% are considered. These
Problems arise in astrophysics for the determination of equilibrium con-
figurations of axially symmetric rotating fluids (rotating stars). Under
nearly optimal assumptions a minimizer is proved to exist by a direct
variational method, which uses heavily the symmetry of the problem in order
to get some compactness. Finally, by looking directly at the Euler equation,
we give some existence results (of solutions of the Euler equation) even if

Y

the infimum is not finite.
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Key Words: Minimization problems, rotating stars, axial symmetry, semilinear

elliptic equations. :
P q i Acecession Por

Work Unit Number 1 - Applied Analysis TS AmAyl

b o o
! C. I.B 0
\ aneed 0
Vol rorieicntyion
Lot N /
tt Crleg
. wt/or
- * ‘ or 1

= + J

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.




o

SIGNIFICANCE AND EXPLANATION

\ . The determination of equilibrium configurations of axially symmetric
rotating fluids (rotating stars) reduces to the following variational
problem: one has to minimize a functional (called the energy) depending on
the density of the fluid subject to the constraint that the total mass is
prescribed. This problem is thus a minimization problem in LlCR3) which,
together with the fact that the domain (Ig) is unbounded, creates diffi-

culties (lack of compactness) which are overcome by new compactness results

using heavily the axial symmetry of the problem. An application of this
method is given concerning other minimization problems in Ll arising in
Thomas-Fermi theory in Quantum Mechanics. Finally, looking directly at the
Euler equation associated with the minimization problem, we obtain solutions

(of the Euler equation) even if the infimum (of the energy) is not finite.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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I - INTRODUCTION

following type : find p in L1m3) minimizing

MINIMIZATION PROBLEMS IN L'®)

We study in this paper a class of minimization problems of the

. . (y)
(1) inf {f Jileax + [ vixeax - & [f —I——YLQ(X)-Q dxdy} ;
050 3 . 20 3,23 Ixy
[ 3p(x)dx=M
R

where 3j is some given positive convex function, V is a2 given axially

‘ symmetric function and where M 1is a prescribed positive constant.

Problems of this type arise in many situations : in celestial

mechanics, as a model to study the geometry of stars and planets (see

(181, 1241, [34),[38] or [26] for the classical theory concerniung

these problems and their origins) ; or in quantum mechanics as Thomas-

{20], [21 ] for qualitative properties of the solutioms).

an approximate problem : find R in WR ={p € L‘(R3),

Fermi type problems. Some particular solutions may be found in [26],
[33], and [39 ), but the first general results are given in [6 ], [4 ]

and [5] (see also [7 ] for a physical interpretation, and [171], [19],

The variational method given in [6] to solve (1) is to solve first

0< p<R, [p=M, p= 0 in R3- {|&|<R}}such that &pg)= lain g(p).

L-—----—ll—--——-----—n--------._.-........-.--__._....— _
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Then one has to obtain estimates on Pg? namely to prove there

exists Ro such that for R 2 R € WR + And finally this

PR
o
provides a solution of (1). This somewhat complicated and undirect

method is used in order to avoid the difficulty due to the term

in the functional.

Indeed if all other terms are " lower semi-continuous " (in a
vague sense) this term is concave in p and thus there seems to be
a difficulty to pass to the limit on a minimizing sequence.

We present here a method to pass to the limit in this term
(which is related to minimization techniques introduced in [10],
{111, [12] or[29]) and therefore we give a direct (and simple)

minimization approach to (1). This enables us to generalize the

results of [6 ], [4 ] and to treat problems like (1), arising in -

Thomas-Fermi theory. This method is based on new compactness results
using heavily the axial symmetry of the problem. In addition, this
method works in some situations for which it is not clear that the
method of (6] may be applied (since it is not clear that the solutions
we find have compact support).

In section II, we give our main results concerning (1) (the
compressible case for axisymmetric rotating fluids) ; while in section
IIT we apply our techniques to the incompressible case. In section IV
we study some variational problems of Thomas-Fermi type. Finally in

section V, we look directly at the fuler equations associated with (1).

Let us conclude this introduction remarking that another class of
minimization problems is treated in [28 ], [8 ] and [15 ] : the main

difference between these problems is in the presence of

-2-
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| ) -
+3 H 0(x)p(y) |x-y| "ldxdy instead of - -;- ” p(®p(y) |x-y| laxdy .

This difference also makes the Euler equations simpler in the case
of [8 ] since these equations (even nonlinear) satisfy the maximum
principle (see [8 ]).

The author wishes to thank H. Berestycki, H. Brezis and A. Fried-

man for helpful conversations.

II - AXISYMMETRIC ROTATING FLUIDS : THE COMPRESSIBLE CASE

IT.1. Angular velocity prescribed :

Let us give a few nctations : D(@) = {p € L! N les(ma).j(l-pl)e L'®%)};

&) = I , j(p)dx + I . V(x)p (x)dx -%I[ 2(x)p (y) dxdy
" " RR* |yl

for p in D(8) , where we assume

(2) j is a nonnegative continuous convex function on R, such that
j() =0,

(3) VEL'@®') and V(x) = V((VX + x5,0,0)) for all x = (x,3X,sX;) ;

(this last assumjtion means that V depends only in r if we use

cylindriecal coordinates x = (r,0,2)).

Remark II.l. From well-known results we have for ali p in L6/S :

( p{x . 2
‘f—zx_%fxl dxdy| < Co iip L6/5 H

(4) 1]
R3xR?
. 6/5 I 1 6
€L dy €EL7) .
(if »p ' g D(y)l;_—y'r y )
c 1/2
Furthermore an easy argument gives : z%) = C vwhere C is the best

constant in the following Sobolev inequality :

™ <c vl , for all u in H'@) .
Lo @) 12®3)




i i 37 ] C = ! _w’)-lla ; thus we have
Now, in view of [35]), [3 Jor [37], \,—5(4 3 s
4.1/3 }
(5) c, = (;) X3

6/5

» the following functional E 1is well

- P(x)p .
E(R ILRSX R %fﬂ dxdy

and E(p) is bounded as in (4) (where Co is given by (5)).

In conclusion for p in L

defined

In addition, we have by Holder inequality, for all p in

NP V5 I

5 lff oy P |yl axayl < ¢ Mo 13340 4/3
and let Cl be the best constant satisfying (5') for all p in L! N L4/3.

Now , we give our main result

THEOREM 1. Let M >0 be fixed. We assume (2), (3) and

. . c
(6) Lin 4t3 =K>0, with -2-1—M2/3<K<«»;
t+® t
(7) &) <0, for some p 1in 5(&) such that D>0.[D<M;
(8) V > 0 a.e. in R}.

Then, there exists p in D(8) such that p > 0 , f s P = M,
R

p depends only of r and z, p <8 evenm and ig nonincreasing in z ,

ad &(p) =  min &(p) = min &(p) <0 ;
6 > 0,0€DB) 6 >0,0eD@)

where D(8) = D(8) N {P = B(r,z) with x = (r,0,2)} .

Remark II.2. This result contains the corresponding result of [6 }
where some extra assumptions are made upon j . Let us also remark that

in (6] (and this is the physical problem) V is replaced by -V where

v satisfies (3) and




1/2

(9 V is nondecreasing in r = (le-ﬁ-x;) s V>0 s.e. .

lim r[V(r)- sup ?I'] =0 .
r+ s» 0

Thus if we set V = supV-;;,wehave
r»>0

min fj(p)-]?rw%n(p)-l min&(p)L-M swp V.
fo=u [o=u J e300

>0 P> 0

And by this simple observation, we see that the physical problem
is included in our general framework.
We will see below (in Corollary II.1) some sufficient conditions

for (7) to hold. Let us also point out that regularity results are

proved in [6 ] and can be easily adapted to the situation treated here.

Remark II.3. The fact that% is critical power and Mo = (%L(-):;/2

1

is a critical mass is proved in [ 6 ] . Indeed, if we consider j(t) = at

g

with 0<a, 0<B< 4 then a straightforward argument shows that

3
min Jj(p)“E(p)"‘”’
fp'M
p>0
and this implies : min &(p) = ~o, ,
fo=n
p>0

We will come back on thi. point later om (in Section V).

Remark II.4. The case of other potentials V (i.e. not satisfying (3)

and (8)) is considered in Remark II.7.




COROLLARY II.1. nder assumptions (2), (3), (6) and (8) and if

we assume either

. tim (o3 =0
‘0
(10)
im TV(r) = 0 ,
r + ©
or
im o3 aw,
t+ o
(11)

M> uc', > 0 , for some constant M") large enough,

then (7) t8 satisfied and thus the conclusion of Theorem II,2 holds.

Proof of Corollary II.1l. If we assume (10), (7) follows from

Lemma 6 in [ 6] : we reproduce the proof .
We choose O such that f , o=M , O0E€ §D+(nl3) and o =0
R

1 . 1 X.
7 Next, we consider Y R O(R) and we

|
' compute
J Ll’j(ok)dx = o{1) f 3112/3 = o(-}{-) (as B> » )
. R

if |x| »1 orif r<

l J , V(r)op(x)dx = I V(Rr)a(x)dx = 0(%) ,
R

V(Rr)o(x)dx =
R®

!

on the other hand

0, (x)0, (y) ()
II""“_—'—R R dxdy-'l-f[oxo()dxdy

| ==yl

And this implies that for R large enough we have &(O'R) <0.

If we assume (11), we now choose O such that { . o=1,
R

g€ $+(IR3) . If we denote by GR(x) = G(-;E) » we have

4




uoxwdx-wfjwnx;

(
J
f V(r)op(x)dx = R? I V(Rr)o(x)dx < CR®

[0 (X)O' (Y)dxdy - [f Ml) dxdy .
| x=y| | ==y

Thus, if R > Ro , we have 8(UR) < 0, on the other hand we have
f GR dx = R? 3
And choosing Mb - R; » We conclude .

We would like to point out that, in the case where we assume (10),
then by [6 ] all solutions p of the minimization problem have compact
support (it is, by the way, a necessary condition for the method of [6 ]
to be applied). Under the general assumptions of Theorem II.1 , we do

not know (in general) that all solutions P have compact support.

11.2. Proof of Theorem II.l

Let us give the outline of the proof : we first want to solve :

(12) &(p) = min {&(p) ; [p<M,p>0, p €D@A).
f pP<M
0>0
p € D(&)
(Remark that the minimizing set is convex and & + E is convex). Thus
considering a minimizing sequence pn we obtain first 1) bounds on

" good " minimizing sequence and 3) we pass

pn ; next 2) we choose a
to the limit and find a solution p of (12).
When this is done, we have to prove in a fourth step 4) that we

have actually : [p = M . This will be achieved in this section by a

simple scaling argument.




-

Remark II,S. This scheme of proof is somewhat standard in minimi-
zation problems and for related problems and techniques the reader

is referred to{11], [12], [29] for example. Here, the difficulty

is essentially concentrated in steps 3) and 4).

Step 1) Let py be a minimizing sequence, that is , such that :

pn>0,pne NM,Ipn<Mam M%)+I>w

where I = _ inf _ 3(;)
pP>0,f{p<H

b € D(8)
Because of (7), I < 0 and we may assume 8(pn) <-1<0.
In view of (6) and (8), we have : for any € > 0 , there exists
Ce > 0 such that & 2/s
8(p,) > (k=€) f 03/3 - CM - ¥ f p;/’

(indeed , j(t) > (k-e)t*/3 - c.t).

And because of (6), we conclude : for any minimizing sequence p, Wwe

have

13) Hpn il 4/3 < Const. ; f j(pn) < cont. ; { V(x)pn(x)dx.< Const.
L

In particular this proves that I > -~ ,

Step_2) let oy be a minimizing sequence, we introduce
~ *
Pa = Pn

* . »
where p denotes the Steiner symmetrisation of p with respect to

the plane X, =0 .,




We recall (see [14 ]) that, because of the properties of the Steiner

symmetrisation, we have
I ite) -I itp)
(since o, and Sn have the same distribution function) ;
f V(r)s; = [ V(r)pn (remark that sa(r,z) and pn(r,z) for any r

have the same distribution fumction in z)

E(Sn) > E(p)

. . . ~ < .
This implies a(pn) &(pn)
Thus, we may assume that the .ninimizing sequence pn satisfies :
*
(14) Pn =P,

~ *
(if not, take pn = pn) , that is, P is axially symmetric, even and

nonincreasing in z .

Step 3) Let G be a minimizing sequence satisfying (14) : by step 1)

e, satisfies (13). In addition, if we introduce

u (x) =fo ) —— ay ,

n
[ x-y|
. . . q .3 3< <12
we have easily : Vu.n is bounded in L' (R’) for 5 < q<3z= and u
o *
is bounded in Lp(Ra) for 3 < p<g 12 . In addition, u o =u .

Lemma II.] will be proved in II.3.

Now, we extract (if necessary) a subsequence of pn » We still

denote by pn » satisfying :




P —> p weakly for 1 < p < 4

n Lp (1R3 ) 3
(15) . u ——> u weakly for 3 < q < 12 and u + u a.e.
LYR?)
1
u ~——> u strongly for q < 12 and u= Ip(y)T;:;r dy .
Ll @Y

loc
Indeed, since u satisfies : - Au.n = Aﬂpn in ;D'(R’), we have by the
well-known LP estimates (see [1] for example) llu_ | < Const.
n w2’4/3(m3)
loc
and by the Sobolev imbeddings u remains in a compact set of Lq(BR)

for any ball B, and for any q < 12 .

R

We now want to prove that p is a solution of (12). We first remark

that, for all R> 0,

[ p dx = lim [ p dx <M
By n+o /B 0

thus penl(aﬁ) and jp < M.

In the same way, using assumption (8), we prove that

0 < I V(x)p(x)dx < Lo ( V(x)p_(x)dx .
R no g3 n
Since j 1is convex and nonnegative, we prove now
J jpyax < LB f i )ax .
R3 n R3 n

4/3

Indeed it is enough to prove that J defined on D(J) = {P €L CRa) ’

LRS j(lp])dx < +} by J(p) = f j(lp])dx 1is lower semi-continuous on

L4/3QR3)(for the topology of the norm) and this follows obviously from

Fatou's lemma.

To conclude, we just have to prove that

E(py,) =+ E(p)

n -+ w

-10-




LEMMA II.1 If Vu€ L2RY), u€LP@®®) (1 <p<w® and if u
is axially symetric and u = u , then we have
2
(16) lu(r,2)| < ¢ {IVu uz/z("*z)uu n"{f?*zmzl'z’ (p+2), p*2
L L

6/5

But E(Dn) = J 0 u dx and pn converges weakly in L '~ (R?) towards o .

R} nn
Thus we need to prove some compactness on u this will be

achieved by the following two lemmas /proved in section II.3) :

for some C <independent of u .

LEMMA II.2 If (Vu) <s bounded in L2@®?), (u) ze bounded in

*
LP@®?) for 3 <p<i1. andif u 18 arially symmetric and u o =uo,

then (uh) 18 relatively compact in Li®?) for 3 < q<1t2.

In particular u (or a subsequence) converges strongly to u in

Ls(Ra) and we are able to conclude.

Step 4) We argue by contradiction. Suppose f p <M, where p is

a solution of '(12). Define Py by
py(s2) = p(r, 3 .

We have : f Py = g f P and

€(py) = d{fj(o) + f vo} - —;— E(py) -
But E(pg) = 0 ” PO (NLg=y P>+ (x,7y,) % o (xymy )7V axay .

Ve want to compute (formally) dga(pc)l and to prove this quantity

g =

is negative. Suppose we have done so. In this case, for O near | and

0 > 1, we have f Py <M and S(QJ) < &(p).

This contradicts the choice of p and this proves that all solutions p

[onn.

-11-

of (12) satisfy




Thus, we compute now d &(pc)l (this can be made rigourous

do O= +]

in a straightforward way) :

2

d ‘ <)(>|x3_y3l dxd
< 8 )l = fj(p)+fvo-E(D)+—”pxpy xdy
AR ? =

<&(p) - 7 E(P *%H POIP(y) s dxdy = EO) -
But &(p) = I < 0 and we conclude.

d

an T 8(pg)qay <O -
Remark 2.6. We have used in the proof abtove : symmetries of the

problem : first, when we choose a good minimizing sequence which
enables us to obtain some compactness via Lemma II.2 and arguments

similar to [ 36 ]; second, in the scaling argument of step 4).

Remark 2.7. Let us indicate how the above proof may be modified to

H treat the case of potentials V which do not satisfy (3) or (8).

Case 1. We assume

(3" Ve L"®) N ulS®Y) , V() = V(r,2), V is nondecreasing in 2

v

L ——— . .
8'") 32 2 SV ae
(18) meas(v- >g) <o , for every € > 0 .

Then, the conclusion of Theorem II.1 holds.

The proof is exactly as above : just with a few modifications, we

use (3') in step 2) since (3') implies

IVp*<[Vp.

In step 3), we pass to the limit in the term ( Vpn in the following way

+ -
Vp_ = - .

~12-




As above lim IV"'pn P fv+p

On the other hand

Vo = I \'A [ v
I °n (v <e) ‘n : (V> ¢€) °n

and IJ V-pn|<ern<eM,
(V<g)

I _ Vo —-— I _ Vp (because of (18)).
(V >¢) B oa+re J(Voe)

We may replace (8) by

(19) Yo <owae.
or by
(20) j'(e)t <2t , for t=>0.

If (19) holds, in step 4) we set pc(x) = p(ax-) and compute %’-&(po)l
o=+l

. d
If (20) holds, in step 4) we compute Eé-ﬁ(ep)le_” .

Case 2. We assume now that V is spherically sxmwettic and V satisfies

(3" veL"®) nu ®?Y)
” _a_!
(8") r3r<2V a.e.

and (18) ; (Again (8") may be replaced by (20),and (3"), (8") may be
relaxed a bit, but we will not consider such generalisations here).

Then, the conclusion of Theorem II.] holds provided 5(3) is replaced

by -
D@E) = {p € D&Ko(x) = p(|x])} .

The proof is the same but step 2) is suppressedjin step 3), Lemma II.]
is replaced by Proposition II.1 of the following section and in step 4)

d
- 8(0 )l ’
do o gm+]

where po(x) - D('g) .

-13-




II.3. Some technical lemmas

In this section we want to prove Lemma II.] and some related
results : we begin by proving a Proposition which generalizes

results of {36 ], [l ].

PROPOSITION II.1. let N>2, |<Sp%iw, | < q< o, There

exiats gome congtant C > 0, C = C(N,p,q) such that for all u

satigfying :
vee P@) , ue i@ |, u@ = u(xD) ;
we have
] L}
2. 4 - @bp
(21) lu(n)| < c MTu TP Pty 9P
LP 19

where p' 18 the comjugate expoment of p(i + %u =1) .

* *
Remark II.8. If p € q (where p 1is the sobolev exponent given

by -l-' - -}!)— - f}) then (21) may be replaced by
P Np
(21") lu()| < Clvall  |x| P .
LP

Indeed, if YVu€ LP and u€ LY, then by Sobolev imbeddings :
w
u€ LP .

*
thus we may apply (21) with q = p and we find (21').

The special case p = 2 of (21') is given in (11 ], while in

(36 ) the case p = q = 2 is given and also used in [29 ].

Proof of Proposition II.1. Let us make a formal proof, which can be

easily made rigorous. We still denote u(r) = u(x), where r = |x| .

d

We have I:(;“la rN-l) >-a Iula-l|u']ru-‘ for r> 0

-14-
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AT

where u-%.*l.

Thus we have
% <o 1w e
r
® - t Ne ' © -
< a [f |y (a-Dp .N lda] t/p [I lu'IPlN lds]l/p
0 0

-a lf [uf 9 ' sl e [I [u'|P o dol‘/p
0 0

<clut¥?'  vul ,
L&) P
and this implies (21).

We now turn to the

Proof of Lemma II.l. We introduce for x in R* and r = |x| :

z
v(x) = v(r) = I u(r,t)de .

z
2
Then v is radial, Vv € LZ(R?) since Vu € L*R’), vE€ LtPg?)

gsince u € LP(R3) and we have

| Vv < |z|l/2 HVu i
L2 (R?) L2@R?)
p!
v Il <|z| P nul .
LP®?) LPR?)

Applying Proposition 1I.1 , we find

- Aol 2
lv(ey] < cHvalPZ g uP*? [P P2 P2

L2(RY) LPRY)

< ¢ 1va @)y, phPD) | P (0¥2) 2/ (p02)
LR LP®*)

*
Now, we use the fact that u = u | thus for z > 0O we have :

v(r) » 2

u(r,z) . And this proves the Lemma.

_15-
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1

Proof of lemma II.2. We just need to prove that if u —— u
weekly in P for 3 <p <12, strongly in Ll{oc for p < 12

and if u u , then this, together with the assumptions

-
ale
made on u o implies that u ~converges strongly in 1% for

3<q<7.

We first prove that
1 1

f dz [ up(x,z.)dx -+ [ dz[ up(x.z)dx , for 3 <p< 7.

0 R2 n 0 mz
Indeed, remark that we have, for z > 0 fixed :

a 1 [ ® a c
I u (x,2z)dx <-J dzf u (x,2)dz €=, for 3 <a < 12
R D z/, ® D z

thus u (.,z) is bounded in L*@®) , for < a< 12 .
In addition, by Lemma II.] , we have :
lun(..z)l < e(|x|) , where €(t) + 0 as t » += .

Applying the compactness lemma proved in [ 36 ] (see also [12], [11])

we obtain
v (z) = f Pix,2)dx —s  v(z) = f uP(x,2z)dx , for 3 < p < 12
“ R " n+® ®?
Now, obviously, v | € C and
L}¢o,1)
I ' [ < lu [P7')Vu Jax < c (] Ju 2P0 1/2
Tz LN, T g 't Yp! X g n

and for ) < p < s, <.p-)) € (3,)2).

v

n L .
Thus | 5 [ L0, 1) < C and this implies Hv_ | L@(o H € C.(Actually, to
1 ]

be rigurous, we need t¢ dssume uy smooth and we then argue by an obvious

density argument). Since Vi s Vv in (0,1 ], we deduce :

| |
[ dzf u:(x.z)dx e f d:[ up(x.z)dx y for 3 <p <7,

-16-




There just remains to prove

f up(x,z)dxdz + [ up(x,z)dxdz
lz]>1 ® |z|> 1

But u > u and for each a > 0 , the set {u_ > a} N{|z|> 1}
n a.e n

is contained in the set {rlzl < Ca} N {lz] 1} = I, » here we just

use Lemma II.! . But the measure of Ia is finite :
i

L C.z
|I|=2J dzIa rdrad- <o ;
o 1

2
0 Ca

and this implies

f uz(x,z)dxdz -+ f up(x,z)dxdz , for any a >0
1

I
o
and p < 12 (we just use the fact that u_ + u and lu | <0).
n n .12
a.e Lo(T)
And finally
J (“ﬁ + up) (x,2z)dxdz < GY[ (uﬁdY+ up-’Y)dx
(l2]> -1, R®

< CGY if v is choosen small enough

and this concludes the proof of Lemma II.2.

11.4. Angular momentum prescribed

We now consider another type of functional, which comes out from
another model for rotating stars (the angular momentum is now prescribed).

Let us denote by

&o) = [ 3phax + 3 [ p(0LM (r(x))) —— dx
IR3 ]R3 e r(x)
21 p(x)p (y)

5 ” , X-y dxdy

IR3XR




with & defined on D(&): the set of functions p 1lying in

L1 N LG/S(Bg) and such that
[ sdemax <o , [ ptoLm (r(x)) —— dax <= .
3 3 p r(x)
R R
Here, we define: m (r) = f ply)dy (with r(x) = /xi+x§, for
e (r(y)<r)

all x = (xl,xz,x3)); and L satisfies:

(22) L 1is a nonnegative, continuous, nondecreasing function on R, .
We will assume that Jj satisfies (2), as above. Such a functional
&(p), as said above, arises in a model of a rotating fluid with pre-
scribed angular momentum: see [6]) and [4] for more detailed explana-
tions.

THEOREM II.2. Let M > 0. We assume (2), (6), (7), (22) and

(10" Tim 5t Y3 < .

t+0+

Then there exists p 1in 6(&) such that f p(x)dx = M, p 1is even

ng

in z and p is nonincreasing in z > 0, and

&(p) = min &(p) =  min &(p)
[o=n fo<m

p>0,0 ¢ D@ p>0,p e D&
where D(&) = {p ¢ D(&), p(x) = p(r,z)} (where x = (r,0,z) in

cylindrical coordinates).

REMARK II.9. Again this result contains those of [6], where some
additional assumptions are made upon j. We give below i) some suffi-
cient conditions for (7) to be satisfied, ii) other existence results
without assuming (10').

We now claim, that, except maybe for (10'), the assumptions are

. . 4
optimal: indeed, as in II.1 (Remark II.3) we just indicate that 3

-18~




is a critical exponent and we refer to [6] for the justification of

this exponent (see also section V below). Now, concerning (7), we prove
it is, in general, necessary: take j(r) = atB {a >0, B Z.%) and
assume p is a minimum of & over »p > 0 satisfying the constraint

fp = M, then necessarily

d 1 X _
W 8F e gy =0
g
Loo®) = =2 (4 11 L
but 85 e = e [3to) + 33 feoLm (x)) 7 o

11
- 5.5” o(::()fy(z) axdy

therefore we have: 3(B8-1) fj(p) + fD(X)L(mp(r)) f? - % fjp(zr;( ) dxdy = 0

and this implies &(p) < - % fp(x)L(mp(r)) J? dx <0 (as soonas ¢p Z O,
r
LZO0).

Proof of Theorem II.2. The proof follows exactly the one of Theorem II.l.

The only real modification is in step 4, where, having obtained a mini~-
mizer p(Z 0) of & among all p satisfying p > 0, fp < M, we want

to prove that fp = M. The argument we are going to use is inspired

from a technique due to E. H. Lieb and B. Simon {28]: it is the only
part of the proof where we use assumption (10').

Let us first remark that (10') implies that 3j is differentiable
at 0 and 3j'(0) = 0. 1In addition, it is easily seen that it implies
that Jj 1is Lipschitz continuous on every interval {0,T] (for all T > 0)
and that we have

lim j'(r)t"l/3 <o

>0 .

For simplicity of notations and of the presentation of the argument, we

will assume that j is Cl and j' is strictly increasing.
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If we argue by contradiction and if we assume: fp < M. Then
using for example [6), we see that p satisfies the following Euler

equation:
P . . 3
min(j'(p), j'(p) + £(r) - u) = 0 a.e. in R .

-1 ® L(mp(r))
where u(x) = Bp = fp(y) |x-y| dy and f(r) = f — 3 ds .

r s
Of course this may be rewritten: p = (j')_l((u—f(r))+) and we finally

obtain:

-au = Bu-EN Y, vu e L2(RY), ue® (B) 3<p <12 ;

where 8 = 4n(j‘)—1.
Since we have -Au > 0, -Au # 0, u > 0 in 1R3, we deduce by

classical results:

u(x) > T%T- for lxl > 1 and for some o >0 .

On the other hand: f£(r) 5_24%%-= —EE ; thus we finally obtain
2r 2r
+
-1 u C
sy __C
P2 (3N TURNT 2r2)) .

In particular, we have

"1, o
on(x) ;fA(J ) Gy O

where A = {]z] < % r2, r > C}, for some constant C > 0. Since we
have, because of (10'): lim (j‘)_l(t)t-3 > 0 and since
t-+0
+
f 1 dx = +°, we obtain a contradiction. This proves fp = M and

A x|’

we conclude.

Now, we give some conditions under which (7) is satisfied:

-~20-




COROLLARY II.2: Under assumptions (2), (6) and (22); and if we assume

either
(10") lim j(t)t‘4/3 =0
t>0
+ .
or (10') and :
lim | -4/3 _
(11) oo j(t)t = +

M > Mé > 0, for some constant Mé large enough;

then (7) is satisfied and thus the conclusion of Theorem II.2 holds. i
The proof of this result is identical to the proof of Corollary II.l

and we will skip it. Let us give another existence result where (10')

is no longer assumed:

COROLLARY II.3. Under assumptions (2), (6), (7), (22) and either
4/3

L(t)t is nonincreasing for t > O

/2

. -3 , -1 .
or j(ort is nonincreasing for t > 0, L(t)t is nondecreasing
for t > 0;

then the conclusion of Theorem II.2 holds.

Proof of Corollary I1I.3:

Again the only argument to be changes is the one corresponding to
step 4 of the proof of Theorem II.1l. With the same notations, we assume
fp < M. For the sake of simplicity let us assume j and L are of

1
class C': then
3
Lo m_(r))

8(0(%)) = 03 [3(o) + 0% i —qrg———-o(x)dx -05~:2L—ff ﬂ’x;)_%%-)-dxdy .

Since we must have: = 0, we deduce

d

dé &(oo)|o=+1

L(m (r)) 3L (m_(r))m_(x)

5 —E—omax+5 P p(x)ax
r

2 2
r

3 [(p) +

_ e 1 p{x)p(y) _
55 /] oy dxdy = 0
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Now, if we assume L(t)t:_‘]'/3

is nonincreasing, we have: 3L'(t)t < 4L(t)
for t > 0 and the preceding equality yields a contradiction with
&(p) < 0.

The case of the other assumption of Corollary II.3 is treated by

a similar method, using p(§yz) instead of p(g).




IIT - AXISYMMETRIC ROTATING FLUIDS : THE INCOMPRESSIBLE CASE

We now consider briefly the incompressible case of an axisym-
metric rotating fluid . In this case (see [ 4 ] for the justification)
we consider the same functional & as in II.l or in II.4. but with

j =0, that is either

& (p)

] i
LRaV(X)p(X) dx - > wa Rap(X)o(y)T';:ﬂ dxdy

or

3 =1 ] -1 (x)p(y)
&2(0) =3 £R3 O(X)L(mb(r))‘;z dx = 5 ffm3x s 1xy dxdy .

And we want now to minimize Si over all functions p (in B(&» such
that :
0<p<1 a.e. and f p(x)dx = M .
®3

Like before the first functional corresponds to the case when the
angular velocity is prescribed, while the second gives the case when
the angular momentum is prescribed.

For the sake of simplicity, we just give a result concerning the
minimization of &, since the results and methods of this section are

2

very similar of those of the preceding one.

THEOREM III.1. Let M> 0 and let L satisfy (22). Then there exists

~

o in D(&z) such that p 18 even, nonincreasing in z ad

€,(p) = mn  &,(0) = min  &(p) <O,
p E D(&z) p € D(Sz)
0<p <1 0<p <1
fon faen
where D{&,) = {p € L' n L6/5(m3), p(x) = p(r,2)  fop qll
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X = (r,e,Z), and f E(X)"'!‘[ L(m ~(r)dx < +°°} .
R? r P

Remark III.l. This result is essentially the same than the existence
result in[4 ]{in[4 ], L is required in addition to satisfy L{0) = 0)
but proved in a different way (Remark also that a third approach,

consisting in solving directly the Euler equation by a fixed point

argument is given in [5 ]).

Remark ITI.2. Some qualitative properties of the solutions of the
above minimization problems are given in [4 ] in particular any solution

o satisfies

where G 1is some bounded, axially symmetric, measurable set. Further

qualitative properties of G may be found in [26 ), [17] .

Proof of Theorem III.1. The proof is exactly the same than the proof

of Theorems II.] and II.2 . We just remark that as in Corollary II.] or
I1.2 , (7) is satisfied. That is : }p in S(&z) such that

0<p<1 and [ 3S(X)dx < M, satisfying
R

&2(3) <0 .

L 1V~ SOME VARIATIONAL PROBLEMS OF THOMAS-FERMI TYPE

We are now interested by finding p minimizing

&(p) = J j(p(x))dx - J[ e(x) £Gey)o(y)
RN RNX RN
over all p satisfying : p 2 0 a.e and f p =M.
: More precisely &(p) 1is defined over D(R) where ﬁ
-24_
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D(g) = {p € LYEY , j(0) € L'(®) and
” p(x)| £(x=y) |pLy) < +=} ,
Rx RN
and j satisfies (2), while f 1is some given measurable function
satisfying

(23) f(x) = f(r) where r = |x| , for all x in RN .

Such a problem occurs in quantum mechanics as Thomas-Fermi type
problems and we will see below some particular examples of interest
for physics (*) . We could also add in &(p) a term like
I V(x)p(x)dx , but we will not consider this case here which (more
or less) can be treated by a combination of the techniques below and
of Section II.

" extended " problem

We will first investigate (in IV.1) the
namely : minimize & over all p in D(&) satisfying p 2 0 and

[ p <M. Then, we give some conditions in IV.2 for solutions of the

" extended " problem to satisfy actually : f p =M. And finally in

IV.3 we consider some examples.

IV.1. Resolution of the " extended " minimization prcblem :

We first consider the case where f is nonnegative and nonincreasing

in r:

PROPOSITION IV.I. Let f satisfy (23) and

(24) £20 a.e. , £(x) is noninereasing ;

*
(') Those examples were communicated to us by Prof. E.F. Redisch.
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(25) feP@®) (1 <p<w) .

Let j satisfy (2) and

(6')  lim j(t) = K> 0 , with cpn‘""?<1<<+«» and q-l+-:; ,
t+o ¢4

(Cp i8 some positive conmstant defined in Remark IV.1 below) ;
then there exists p 1in D(&) minimizing & over all 3 satiefying :

PED® , 520 ae.and [Fu.
In addition if £ # 0 all such p solutions of this minimization
problem satisfy necessarily{up to a translation) : p is spherically

symmetric, nonnegative and p is nonincreasing in |x|.

Remark IV.l.  If we take N = 3 and £(x) = —llxl- ,then p = 3 and

4
q=3 and (6') reduces to (6). The constant Cp is defined by

IU PGP (7| £Gey) [axdy| < ¢ Hp ni:”P Ilp ";”p’ for all p

in L!n i,

Remark IV.2. Of course it is possible to generalize (25) by (25')

p' o0
(25") fef @) + L@ + @D L<p, <= ,
i

and (6') has to be replaced by the corresponding assumption with

q=1+ AL (and q = 2 if in all decompositions of f as in (25') there

i

i

1s a term in LI(RN)).
Remark IV.3. We may replace (24) by the following :

ff= fl—f2 a.e. , where f
(24") ’1

. f2 20 a.e. and f,(x) = fl(r)

is nonincreasing while fz(x) = fz(r) is nondecreasing.
Then (25) has to hold only for f1 and the Proposition IV.1 (and its

proof) are still valid.

~26~
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Proof of Proposition IV.1l. By a classical use of Schwarz sym-

metrisation process (see [14 ] , for example, for the definition
and properties involved here of the Schwarz symmetrisation) the
necessary part of the Theorem is proved. This also proves that
we may assume that a minimizing sequence Pn satisfies

pn(x) = pn(r) and p, 1is nonincreasing .

Now, because of (24) , (25) and (6'), exactly as in the proof of
Theorem II.}l, we get a priori estimates : I j(pn)dx <cC,

0 (x) £(xy)p_(y)dxdy € C , (and in particularlip |l <0).

Now using the fact that Py is nonincreasing and that lip "L‘ <M,

we deduce 0 < pn(x) <—C—- .
[N

In addition, from a classical result, since pn is a sequence of
nonincreasing functions bounded in Lm((e,w)) (for every € > 0) there

exists a subsequence n, such that : p +> p .
a.e

(One could also obverse that Py is of bounded variation, except maybe

near 0). In the same way as for Theorem II.l, one concludes since :

p_ (x)f(xylp_ (y)dxdy —> ”o(x)f(r-y)p(y)dxdy
[ oy oo ooy .

Next, we give some results illustrating a method to prove
the existence of a solution to the extended problem, we use

i) the spherical symmetry, ii) regularity properties of the ' potential "

u(x) =f * p(x) -J f(x-y)p(y)dy

RN
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PROPOSITION IV.2. Let f satisfy (23) and

f= f]- f. a.e. with fi 20ag.e. (i =1,2), fi 18 radial (i=1,2)

2
(26) J md £, € WP &™)
Ve, € M@ with 1 <8< and scptl ; or Ve €LIRY.
Let j satisfy (2), (6') ;
then there exists o in D(§),with [ p S M, radial nonnegative mini-
mizing & over all p satisfying 5 € D(&), b is radial, p>0ae. and

f S dx < M .

Remark IV.4. As in Remark IV.2 , (26) may be generalized assuming that

Vfl belongs to a sum of Mp-spaces or Lp-spaces (and a similar assump-

tion for fl)' In some sense (24) is a particular case of (26) since f

being nonincreasing in (24) is essentially of bounded variation.

Remark IV.5. If £(x) =l—,'q and N =3, then V€ MY2@®%) (and
b4 s
%< 3).

I s—1

1
P

Proof of Proposition IV.2. Let pn be a minimizing sequence such that
Py is radial. We know by the same argument as in Theorem II.l ( Prop. 1V.1)
i <
J J(On) c, ” pn(x)fi(:ry)pn(y) <cCc, llpn HLln . <c,

for some C > 0 .

Next, we introduce : un(x) = I N fl(x-y)pn(y)dy , then u € LaGRN) .

R
(for p < a < p(p+l)).

In addition because of (26) : Vun € LB(mN) (tor s < B < ﬁé%;élg,

Since u is radial un(x) - un(lxl), we may apply Proposition II.l and
this enables us to apply the method of proof of Theorem II.} , and we

conclude.
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Remark IV.6. It is possible that (26) may be relaxed, assuming
only fl to be in a fractional Sobolev space, then ome would need

to extend Prop. 1I.1. to fractional Sobolev spaces.

Remark IV.7. 1f instead of (23), we agsume
f(x) = f(r,z) where r = (xf* x,‘z,)l/2 » X € R
and £f2 0 a.e. , f is nonincreasing in 2z ; then similar results

may be proved but we will not consider such a generalizationm.

IV.2. Saturation of the oconstraint.

We are now looking to the problem of determining if f p =M,
where p 1is the solution of the extended problem.
More precisely, in this section, we will gssume that p € D(@E)

and p minimizes & over all E in D@®) such that ;>0 a.e.

and IS< M . Of course D@&) may be replaced by SQ%) the subspace
of D(&) consisting of radial functioms.

We give essentially two simple methods to prove that fp dx = M :

PROPOSITION IV.2Z. If we assume (2), (23) and 8&(p) < 0 (or in a

equivalent way ] 0 € DE@) , p>0, [ p <M such that &(p) < 0)

and if etther

(27) j'()t € 2j(t) a.e. for t >0

or

(28) Nf(r) + £f'(r)r 2 0 a.e. forr>» 0,

where f 18 assumed (for example) to be C' on (0,®) ;

then o satisfies : | N p(x)dx = M .
R

Proof of Proposition IV.3. If we assume (27) and that f p dx < M

then computing

-29-
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% 800)|g,,, - I L i@ ax - ” o (x) £(x-y)p (y) dxdy

R Y x g

< 28(p) <0
we get a contradiction from the definition of p .
On the other hand, if we assume (28) and that f P dx < M, then

we have, denoting by p_(x) = D(%;)

%—U 8(00‘)|0_+l =N f j(p(x))dx - N H p(x) £(x~y)pr (y) dxdy
&Y & x "
- -% ” p(x) £' (| x-yDx-y| o (y) dxdy
&V« &Y

<3&@ <0,

and the result is proved.

Remark IV.8. The above proof shows that (28) may be replaced by

” P(X){£' (xy)(xy) + N £(xy)}p(y)dxdy > 0 ,
R x /Y

for all p in ZD(RN) and p =0 a.e.

Remark IV.9.  Obviously (27) is satisfied for j(t) = t' and Y < 2,

while (28) is satisfied for £(r) =r ¥ and 0 <k <N .

Remark IV.10. We would like to give another method taken from {28 ]

which could be useful in some particular cases. For simplicity, we

assume N = 3 , f(r) =—l— ! an easy argument gives that one has, if

Jsp dx <M,
R j' () =T11‘T* p a.e. in R? .

If we assume that j' is strictly increasing and j'(0) = 0 , then

denoting by u = BRI p , we have

| x|

p =B8(u a.e. in R® ,

-30~




where B = (j')-l . On the other hand, because of the spherical

symmetry :

] ]
u(r) = LR’ p(y) TR dy » (Jmso(y)dy)-; . If

&) <0, then p 20 and f , p(y)dy =m> 0 .
R

- -]
Thus p » B(-E ) a.e. in R} ; and now, if we assume [ rzs(%)dr = 4o,
X

we get a contradiction, since p € L! . This contradiction proves :

J p dx = M . Remark that if j(t)t-(l+Y) —> L € (0,) , then

_]/ t + @

lim B(t)t Y exists and is > 0 , and

t> o -

and [ r?B( %’) = 4o gg goon as Y 2 %- .

Of course, it is possible to combine Propositiomns IV.1 , IV.2
on one hand, and IV.3 on the other hand to get general results for
the existence of a solution to the minimization problem. But for
simplicity we prefer not to give these results but to explain how
they apply to some particular examples. In addition we would like to
point out that Propositions IV.1-3 are only examples of methods

described in the corresponding proofs.

v.3 Some exanples.

Example 1. " non-rotating stars "

This means we consider the case : N = 3, f(x) = Tir- + We may

apply Proposition IV.l since f € MRy ; Proposition IV.3 also
applies since (28) is obviously satisfied and thus we find back
Theorem ITI.1 (in the special case V = Q) by the combination of

Proposition IV.] and IV.3.
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Example 2. We consider the case N = 3, f(xX) = e uxl Tir(u > 0).

We may obviously apply Proposition IV.l since f € M'(R®), thus if j
satisfies (2), (6') (with p=3) and (27), and if there exists

5 in D(e) such that &(S) <0 and f S < M then there exists

p in D(e) satisfying

i) p is radial, nonincreasing , p # 0 a.e. , I p dx = M .

ii) &(p) = _min  &(p) = _min &(p) .
p € D) p € D(&)
p>0, [ =M p>0, [B=M

Finally, for the existence of p in D(&) such that &(p) < 0, and
f P <M we indicate two simple cases where this can be checked :

1) If j is differentiable at 0,if j'(0) < 0, then for every

>0 in DE) G 8(t0)| 5~ §'(0) [opax,

and thus the condition is satisfied for every M > 0 .

2 If lim j(t)/t2 =0, then for M large enough the condition

t + o

is satisfied indeed &(tp) 1is negative for t large enough if

o€ Z)+(Ra) » P ¥ 0 ., Remark that (27) implies that j(t)/t2 is

nonincreasing. We shall see further on (in the next section) that in

the case where j'(0) =0 and lim j(t)/tz = 0 , this condition on
t +

M has to be assumed : in otherwords if M is not large enough then

the minimization problem does not have any solution.

*
Example 3. We consider the case where : N = 3 , j(t) = %. t 5/3 ).

Of particular interest are the following functions f :

*
(') This case was brought to our attention by Prof. E. F. Redish and

seems to arise in quantum mechanics.
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- 1 -
(29) f(r)-+%e M _ AT TMIE lith w,u',A, A' > 0 .

Before looking at the special case where £ is given by (29), let us
remark that in order to apply Proposition IV.1-3 , one only needs to
assume either (24) and

(25") £fe P@®R®) , for some » >-:23-

(or p -3 and I £l small enough) ;

2 3/2

M
. 3
or (26) (with p = 5)-

In particular we have :

PROPOSITION IV.d4. Let £ satisfy (26) (with p = %) and assume there

extgts o in D(8), such that p is radial , p > 0 a.e. , f3< M

and E&(p) < 0 . Then there exists p in D(&) satisfying :

Z) p tis8 mdial, p>0 a.e.,[apdx-M.
R

ii) 8(p) = min{&(p)/p radial , p > 0 , p € D) , f o< M .

Finally the existence of p may be obtained using the methods of
Corollary II.l. : in particular we find that
i) if, for r small enough, we have : f(r) » Cr:-k for some C,k > 0,

then for every M , there exists p as in Proposition IV.4. (just

]
compute &( =3 O(g ))) s
ii) 1if there exists p such that ff p(x)f(x-y)g(y)dxdy <0, 5> 0
then for M large enough, the existence of p as in Proposition IV.4

is insured (just use the fact that &(Bp) + - if 0 -+ +x) ., Of course

” p(x)f(x-y)p(y)dxdy < O being true for some p is necessary for the

existence of p as in Proposition IV.4. And it is quite obvious that




0

it is satisfied for example if f £(r)r? dr < 0 (eventually - ®).
0

We turn now to the particular case where f is given by (29) :

- !
f(r)-% eur-% e M T

Obviously (26) is satisfied. Then, a solution of the minimization
problem exists as soon as there exists p as specified in Proposition IV.4.
By the preceding remarks , this is in particular satisfied for every

M> (0, if A> A" (or if A= A' and u' > u) ; and for M>M°,if

A _ A' <0
TJ'Z u-z
In the next section, we consider the Euler equation associated to
th . 1 - ylx| 1
e special case N = 3, f(x) -r;I or f(x) =e T;T .

Before that, we would like to point out that we deliberately ignored some
aspects of these minimization problems :

i) regularity of solutions, ii) properties of compact support of solutionms.
These two aspects may be studied with the help of techniques due to

[6 ], or by direct examination of the associated Euler equations ; we will

not study such problems here.
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V - THE EULER EQUATION

First, let us derive formally the Euler equation associated with (1) :
a solution p of (1) must satisfy for some A ER :
j'(P) + V-8B > if p=0

(30)

\ ')+ V-B =2 if p>0 .
where Bp(x) = I T-l—wp(y)dy , see [6 ] for the proof of this assertion

x=y

(provided natural assumptions hold for j and V).

In all this section we will assume that j satisfies :

(31) j is a ¢! , positive, strictly convex function on R, such
that j(0) = j'(0) = O . In particular j' is increasing and 8 = (§')""
exists, is continuous on R, and E(O) = 0 . Thus, (30) is equivalent

to
i'(p) - max(uwtA-V,0) = 0 a.e. in R>

(31" {

u= B ,
or
I - fu = 4mB((wA-V)Y) ae. in RS,
(32) l u = Bp ’

6/5

. 6 . . e s
since p€L!NL (R3) suE L GRB) and in some sense u = 0 at infinity.

Thus, we are looking for a solution (A,u) of

- fu = B((uwA-V)") ave. in R, w(@) =0, uzo0,
o |

I 3B((u+A-V)+)dx =M ,
R

with B(t) = 47 B(t).

The goal of this section is to look directly at (33), to see if

there may exist a solution (A,u) of (33) or equivalently a solution p




of (30) even when the energy & is not bounded from below . This
phenomena occurs in a somewhat related problem : see [8 ], [ 15 ]

for example. We only consider the case where V = O (but for general
similar arguments can be made) : Section V.l is devoted to the study

of (33), while in section V.2 we consider the case when the potential

1 . 1 -yl x . . .
T_XT is replaced by m e UI l . Finally in section V.3 we study the

limit case j(t) =7:3— t4/3 .

Remark V.1. If V is given by a Coulomb type potential in R3

V(x) = - <

| x|

for some C > 0 , then (33) is equivalent to
(33") - Au = B((wN)Y) + 4m 6 in T'®),

where u = u+|-%| , thus u= 0 a.e.

If we take £ to be a pure power : B(t) = tI/Y(Y < 1), then by the
results of {30 ], there is no solution of (33') if Y <-—l§ ; this

1+y

implies that (1) does not have any solution for j(t) = Ct and

Y <% . If vy > -;— » we may apply our minimization techniques : for

example the fact that the constraint is saturated follows from the
me thod given in Remark IV.10 . We believe that, combining methods of

{30 ] and of the next section, the remaining case -;—< Y <% can

be treated (note that for Yy <-;— » the energy & 1is not bounded from
below) ; and we hope to be able to treat this case in a future study.

We now restrict our attention to V = 0 (smooth, positive functions

may be treated by similar techniques).

V.l. Solving the Euler equation

We thus consider the problem : find (u,)) solution of
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- Au=B((wN)) ae. in B, u> 0
o |

J B((uth))dx =M > 0,
RN

where A €R , M is given and the exact class where we look for u is

1,2, N

H=D02@) = {u, uis radial, Vue 2®) , ue L 2N/ (N-2)

(RN)} .

In all what follows, we assume N 2 3 . The fact that we restrict our

attention to radial solutions may be justified by the results of [22],
{23 ]. Remark also that A necessarily is nonpositive : A < 0 .
In conclusion, we look for (u,A) in H x (—,0] solution of (33).

A direct application of the results of [ 11 ] gives immediately :

THEOREM V. 1. Let 3 satisfy (31) and

t > @

then, for every X < 0 , there exists a solution u of
(33') - bu=Buw)) ae. in RN, u>0, uEH ;
in addition u is decreasing , u€ C2®Y , B ((wn)’) € L'@®Y)
and there exists Ro > 0 such that

[uED = wa -e,

R0 N-2
! u(r) = - A(;fo , for r=> Ro .

In particular, there exists at least one M > 0 such that (33) has a

solution (u,A) in H X (—=,0).

Remark V.2. (34) is equivalent to : lim B(t)t—(N+2)/(N_2) =0

t >

and one knows (see [32 ], (36 Jor [12]) that %;% is the best

exponent in order to solve (33'), this proves that (34) is nearly optimal.




T ee—

The exponent given by Theorem II.1 (or its immediate extemsion to

ﬁigher dimensions) 1is : we see that looking directly to the

N
N-2
Euler equation improves the conditions on j and that there are
solutions of the Euler equation even with & unbounded below.

We will see further on that in general one cannot say more for
the existence of one M : indeed we will show that for j(t) = tl'/3

(in KR3) there is only one M such that (33) has a solution. Never-

theless, by a more precise analysis, we will be able , with suitable

restrictions on B(or j') to gemeralize this conclusion.

Remark V.3. Because of the prior reduction the corresponding density

p 1is p = CNB((u+X)+) , where CN is a constant depending only on N .

N . . . . .
And obviously , p € C(R'), 1s radial, nonincreasing and with a compacc

support equal to By = {lg] < Ro} .
o

Proof of Theorem V.1. The first part of the Theorem is an immediate

consequence of the general existence results of [11 ]. Now, since u
is decreasing there exists a unique RO such that u(Ro) = - X and

for r > R~ we have : u(r) € - X and thus - Au=0 if |x| > R -

But, this implies rN-lu'(r) = Rﬁ-]u'(Ro) for r=> Ro and since
u(r) + 0 as r 4 +o , we conclude by a straightforward computation.
(Remark that in [ 31 ], another proof is given reducing (33) to a problem
in a ball and using then the results of {32 ]).

We now prove the claim made on Remark V.2. concerning the case

. . 0
tz'/3 actually we consider the case of B(t) = t  (correspon-—

1+1/a

j(e)y =

ding to j(t) = Ct ) , for simplicity we restrict ourselves to N=3.
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PROPOSITION V. 1. We assume that B(t) = t>, with 0 < a < ® ,

If 0<a<5 andif o # 3, then for all M> 0, there existe a
wnique (u,A) € H X (-=»,0) solution of (33). Moreover u€ c? GRN) and
u T8 decreasing . If o = 3, then there existe a unique Mo such
that (33) has a solution in H x (= , 0) : in addition for all X ,
(33') has a wique solution uy (with the same properties as in

Theorem V.1) and M = / , B((ux+k)+)dx 18 independent of X .
R

Remark V.3. It is easy to prove if a > 5 , then (33) has no solutions
in H x (-~,0) for every M > 0 .
Before going into the proof of Proposition V.l. , let us make some
preliminary reductions (independent of the choice of RB).
Indeed, instead of looking for (u,)), we are going to look for
(u,Ro) as in Theorem V.1.
More precisely suppose we have a solution v of
- = 4 > .
Av = B(v) 1in BR » V>0 in BR

(35) v=20 on BBR s VE Wz’q(BR) (¥ q < =)

l f B(v)dx = M,
BR

for some R > 0 , then by [22 ], v 1is radial decreasing and if we set

N-1 ,
v(r) =__&__ﬁ_‘_’§_§_&2_+ Rv'(R) , for r=>R
r

N
u(x) = v{|x|) =X, fcr all x in R ;

{)\=Rv'(R)<O ,

then (u,A) is a solution of (33) in Hx(-=,0).
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On the other hand if (u,A) is a solution of (33) in H X (~=,0) ,
then it is easy to see that u 1is decreasing and if R 1is the
unique solution of wu(r) = - X , setting v = (u+t)), we see that
(35) is satisfied for such a v and such a R .

This remark (which we will also use later) being made, we turn

now to the proof of Proposition V.].

Proof of Proposition V.l. (see also [31 ]).

We consider first the case when a ¥ 1 ; then let us denote by Vv

the unique solution of

- Av = B(v) in B1 s V>0 1in B] s

v=0 on BB] .
The existence for o> 1 follows from [2 ] (for instance) while the
uniqueness is proved in [22 ] (the case o < 1 1is well-known).

2(1-a)

Obviously vR(x) = R v(%) is the unique solution of

- AvR = B(VR) in BR > Vg >0 in BR s Vg = 0 on 3BR .
Now let us compute
A = RVI(R) = g2/ (1-a)
3-a
and f B(vp)dx = RZa/(l—a)R3 [ B(0)dx = rIT® f g(0) dx ,
Br B B

and this proves the Proposition (at least for o # 1).

If a =1, then R in (35 is prescribed by : A‘(Ro) = +1 where A, (R)
is the first eigenvalue of - A over Hl(BR)' In addition v in (35)
is prescribed by fB v dx = M and we conclude.

R
[

We now give a few partial results which give a more precise description

of the set of M such that (33) has a solution (u,A) or equivalently




such that (35) has a solution (v,R). We insist on the fact that this
study is a priori difficult in view of Proposition V.l. and that the
results we give are only partial ones. The first result, in some sense,
represents the counterpart of Theorem 1I.! where the case

lim B(t:)t:-3 < ® jig considered.
t > o

PROPOSITION V. 2. Under assumptions (34) and

(36) lim B(t) £ YD) L.

t >
(37) Tm Bt <=,

t+ 0
and

t
- tB(t)-6y(t) , - 2N

(38) tlimm —t;BL(jz-/—N <0 ,with y(t) IO B(s)ds and 0 < 8 <=5

then there exiets M.0 € (0, +» ] such that for all M€ (O’Mb) there

exiete a solution (u,A) of (33) in H X (==,0).

Remark V.4. Assumptions (34), (36) and (37) are just assumptions on the
shape of B which are quite natural . On the other hand (38) is a
technical assumption (we believe it is not necessary) which insures that
all solutions of

(39) - Av = 8(v) in BR , v=0 on BBR , v>0 in BR

i < i < < .
satisfy v “Lm(B , C(Ro’Rl) , if 0 Ro R < RI < 4w
R

This a priori estimate is proved in [13].

Proof of Proposition V.2. We begin with a remark : we only need to

prove
1) for every € > 0 there exists a connected component T§€ in

R x Cb(RN) such that :
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e

i) if (R,Vv) € %ée , then v solves (39) ,

ii) {R,Jv,R,v) € ‘C‘)e} O [e,R € ], where R is some fixed

.. . s s 1
positive real (eventually infinite then R° - € means E-).

2) Let ke = {v solutions of (39)} and m, = sup f B(v)dx,
v € KR BR
then mR - 0.
R>0

These two claims will be proved in two steps. We first define Ro by

A (R) = Tim B(t)t '  (if this limit is 0 , then R = ®).
[s] t**O (o]

Step 1. We are going to use a topological degree argument and a theorem
due to Leray and Schauder [25 ] : our argument is reminiscent of a
similar argument used in [9]. Let us first transform (39) , by a simple

rescaling (39) is equivalent to

(40) -Av=R*@(v) in B, , v=0 on 9B, , v> 0 in B
1

1 1°

In view of the choice of Ro » we have for all R < Ro :

2 57 B(t) _ .2 2 -
R t¥imo il R Al(Ro) < ROAI(RO) A](l) .

Let € > 0 be fixed, because of the preceding inequality, we have

tvi >o >0
L (Bl)

for every v solution of (40) with R < Ro - ¢ and for some o > 0 ;
see [16 ] or [13] for a proof of that observation.
On the other hand, by the result recalled in Remark V.4. we have

v il <C

L (B))
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for every v solution of (40) with €¢ <R < R° -t , for some

C > o .
Now, we introduce the following compect operator FR from

C(ﬁl) into C(ﬁl) : FRu = v ig defined by

- Av = R®*B(u) in B1 , v=0 on 831 »
(41) {

ve i) ,Vq<e;
where B is defined on R by B(t) =0 if t<O0.

Suppose we have proved that the topological degree of FR on the

open set Q = {v € C(ﬁl) sa<lvl < C} is different from O
L

and more precisely suppose we have proved

d(1I-~ FR,Q,O) = -] , for all R € [e,Rb-e ], then by a fundamental

result of Leray and Schauder [25 ], the first claim is proved (extending

N, r

functions which are zero on BBR bs zero outside BR) .

Thus, it just remains to compute this degree. First, let us
compute d(I—FR,Q],O) where Q, = {ue C(il), i |IL°° < a}l . In view
of the estimate recalled above and its proof (see [16 ]) we see that
d(I—tFR,Q‘,O) is well defined for 0 < t € | and is thus independent

of ¢t
d(I‘FR:Ql’O) » d(IyQVO) =+1,

since O € Ql .

Now, we want to compute d(I-F 0) where Q2 ={y€ C(i}) .

R’Qz’

full < C}, with C choosen large enough for this degree to be well
L

defined in view of the a priori estimates .

Let u > AI(Bl) , it is easy to check that the proof in[13 ]

gives the following estimate : lull < ¢ for all u solution of
L

- Au= tR%B(u) + (1-t)(Wu’ + 1) in B, , u>0 in B, , u= 0 on 38, ;

1 1
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where t is any real in [0,1]. Thus, if F is the compact

operator defined on C(fl) by Fu= v is the solution of

-Av e pg +1 in By, V=0 on 3B ;

then, we have :
d(I-FR,QZ,O) - d(I-F.QZ,O) .

But, if Fu= u then u by the maximum principle satisfies
-Au =+ 1 in Bl,u>0 in B, u=0 onaBl .
Since we have chosen u > A] (1), this is impossible and F has no
fixed point in Q2 s thus : d(I-F,Qz,O) =0 .
In conclusion, we have, since Q = QZ-E, ’

d(I-Fp»Q,0) = d(I-Fp,Q,,0) ~ d(I-Fp,Q,,0)

= ~] ,

Step 2. We now prove that m, —> 0.Let V! be a positive
R0 R

eigenfunction of - A corresponding to )\I(R) ¢ we normalize it by

I v! dx = +1 .
B

R
R
Thus, in particular, on B we have : vi(x) > 2 > ¢ » for some
R/2 R &

fixed a > 0.

1

R and integrate twice by parts, we

Now multiply (39) by v

obtain :

1
— vl dx = B(v)v} dx , for some C, > 0 .
R2 B R R 1
B
R R 1
Because of (36), for every K > 0 , there exists to (= to(K) such

N/N-2

that B(t) 2 Kt if t2¢ .
o N-2
_ 2¢, 2, 2
In particular B(t) ® ——t if ¢t » max(t , (——) -,)
RZ o K RN-Z




This implies

C
-JZ-I w! dx > B(M)V} dx >
R

By R f13Rﬁ{v>t:l}

zc1 .
> -5 f vvR dx
2]
R By {v> tl}
and ¢
L 1 1 1 -1
R/JB_ N (v> t) R" /B N(v< ¢t,) R
R R 1
Thus,
2c,t
f B(v)vl‘{ dx <
B R
R
and ) N=-2
C 2C 2c, 7
L oN2, LN LR 1
I B(v) d&x< 5~ R “t, <R “(t i) T2
Br/2 R

<ct %, cx w-2)/2
270 3

Since all solutions of (39) are radial and decreasing (cf. [221),

we have

f B(v)dx = Cy f

BR 0

R _ R/2 _
B(v(r))rN ! dr = CN I B(v(r))rN ! dr
0

R

R
B(wax + g2 f BV PV ar

v Cy f Blv(e)e ! ar
B R/2

R/2
<f
2

since B 1is increasing and v is decreasing, and therefore

f B(V)dx < (1+2Y) I B(v)dx .
By Bas2

In conclusion, we have proved :

IBR B(wdx < C, t (RRNZ, CSK-(N-Z)IZ .




e |

Choosing first K small and then R small, the claim is proved.

Remark V.5. We use (36) only in Step 2, and to obtain similar

results with other types of growth at infinity, one would have

to make similar arguments as in step 2 (maybe for R + «),
Another example of the same general method is the following

result which we will not prove here for the sake of simplicity.

PROPOSITION V.2. We assume that B 8atisfies :

(42) lim  8(t)t ) =0,
t + ®

(42') lim  B(t)t ) exists in (0, ®) .
t + o

then for all M > 0, there extsts (u,A) in H X (- «,0) solution

of (33).

Remark V.6. This can also be proved by a simple use of bifurcation

' results.

V.2. Arother type of potential

We now consider the case where in (1) , l is replaced by
[x]

e lelri' » then (33) has to be replaced by

- fu+ plu=B((wN)) ave. in R, u> 0 in R,

(44) wu€ CERHNH, A<0;
‘ f BC(wM)Ydx = M .
‘R3

Simjilar arguments to those developped in the preceding section can

be made to prove that under very general assumptions (similar to those

encountered in V.1) the set of M such that a solution (u,A) of (44)
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exists is of the form (Mo,w) for some Mo >0 . In addition u is
decreasing and if A > 0, we have that wu(x) = C e-ulx' T%T for

| x| large enough. In order to restrict the length of the paper,

we will not prove here such results but we will just examine some
general example proving that for M small enough, there cannot exist
a solution of (44) and thus there does not exist a solution of the

associated minimization problem (see Example 2 in section IV.3).

PROPOSITION V. 4. If we agsume :

(45) Zim ié-t-) <,
t=+ 0

(46) lim  B(e)t™ = 0, with a < ﬁ%— ;
t=> 0

then there exists M such that , for all M€ (O,Mo) s there exist

; no solution of (44).

Proof of Proposition V.4. Assume there exist (un,xn) solution of

(14) with M =% and let us derive a contradiction . We first prove
. o N

that u  converges to 0 in L (R) .

Indeed we have

du r
_ N-1 no_ N-1 +_ L2
0K -r v [0 s {B((un+)‘n) ) - u un}ds

and therefore

€
n n
(47) i | < '*—-rN_l for r>0,

where En —_— 0.

n-> o

Since we assume ‘45), by [ 36] (see also[111]1,[12]) we know that
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o is exponentially small at infinity and we deduce

€
n
(48) lun(r)l <:_K-2 for r> 0.
Now let R > 0 be fixed, on BR we have
-— 2 - 1
Aun + U u fn in BR
E:n
unl < N-2 ’
BBR R
where f € L!(B.) and f R o0
n R 1
L (BR)

By wellknown regularity results, this implies :

n > «

N
w q—~> 0, for all q<-ﬁ—_-_-5.
L(BR)

But 0< B ((un+ )‘n)+) < B(un) and by an easy bootstrap argument

n -+ w
(using (46)) we obtain : u —_— 0.
[+ <]
L (BR)
n > oo
This, together with (48), implies u —> 0.
L @®Y)

Now, from the maximum principle (since un(O) = | u )
L
we deduce :

2 +
< < .
Wu (0) < B((u* A)7)(0) < B(u (0))
In view of (45), we have a contradiction ; and that contradiction
proves the Proposition.
Remark V.7. This proposition, compared with Theorem II.l! , shows

that if we replace T}?— by e'U|X| T]’ET » then in general, we have
t

to assume M > Mo in order to solve (1) (or (33)-(44)).The fact that

it is enough to assume M > Mo is studied in Section IV,
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V.3. The limit case : j(t) -%:“/3

We have seen (cf V.1. and section II) that j(t) = %-t4/3

is
a limiting case. The goal of this section is to explain exactly

what happens in that case. First, let us introduce some notations :
by Proposition V.!, we know there exists Mo such that, for every

A < 0, the equation

(49) - by, = Aﬂ(ux+)\)+3 a.e. in R, u, > 0

has a umique radial solution uy in H (having the properties listed

in Theorem V.1) and in addition we have for all X < 0 :
f (u>‘+)\)+3dx -M ,
R °

for some Mo > 0 , independent of X .
Then, we have the following result for the corresponding minimi-

zation problem :

FROPOSITION V. 5. Let M> 0.

4/3

1) if M« Mo , ther. for every p 1in Ll(/R3) ni (JR3) such that

ilollL,<M, we have
8(0) -f 32 ol Pax - %” , o R gygy >0
R RO®

nd &(p) =0 implies p = 0 .

ii) M=M_, then for every o in L@ N L3@®3y such shat

Ho v < M, e ae &(p) 20 and &(p) =0 Ifand omly if p = 0

3 amd or gome A< 0

-

r uo(x) = (“A”)ﬂ(rxo) , for some xo in R
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tit) If M > M, then & 18 unbounded below on the set
e n? o <m .

In other words the minimization problem has no solution for M # Mo

]
and for M = Mo its solutions are exactly (up to a tramslationm)
P, (x) = (u +)\)+3 . We will see in the proof below that M = (-—3—-)3/2 J
A P\ o 2Cl
(C1 is given by (5')).
; 3 .,3/2 . ,
Proof of Proposition V.5. Let M, = (-Z-C—) . Obviously if M<K Ml s
1

we have &(p) 2 0, for p 1in Ll N LA/3 , o "Ll <M.

On the other hand a simple argument proves that for M > Ml s

a3 e

& is unbounded belowon {p €L NL < M} .

Ll

Now let us assume that &(p) = 0 for some p 1in Ll n L4/3

*
o i ‘ < M . Since, by well-known results, &(p )< &(p ) except if
L

*
p(x) = p*(x-xo) (for some X in IR3) - where as above p denotes the
spherical decreasing rearrangement of p = we deduce that (up to a

*
translation) p =p . Now, if fip | 1 <M, we get (setting po(x) = p(-;ﬁ))
L

3 4/3 1 -1
& = = - -
o (p0)|c=+| 3 fiRa z P dx - 5 ffuﬂx iRa?' p(x)p(y) | x~y|  dxdy

- ”R3 o o(x)p(y) | x-y| " dxdy
| X

Then if p # 0, this would imply 3(;) < 0, for some S in LN LM3

with llp "Ll < Ml and this is impossible.
Next, if Ilp ”Ll =M , P satisfies the following Euler equation

I-Au=4ﬂ(u+X)+3a.e. in(Ra,uGH,u-u*>0,)\€IR.

| o= n et a3,
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This implies easily A € 0 . And applying Pohozaev identity (see
[12 1) we .or-in

(50) 0 < I qulzdx =6 T f (u*X)+adx = 4T f
R? R?

uer) ¥ ax ;
R3

therefore A < 0 . And this implies : u = U p = (u)\+)\)+3 .

To conclude the proof of the proposition, we just need to recall
the result proved in [6 ]: for M = M1 , there exists p satisfying
&() =0, p€LlN La/3 and lip "L’ = Ml . Thus Ml = M.o . And it
just remains to check that for all A < 0.

+3
&(OA) =0 , where Py = (ux+k) .

But in view of (50) , we have

4/3 _ - -1
6 [Ra N dx = 4 jR3pA(x)ux(x)dx 4 [fR3x R3pk(x)pA(y)lx-yI dxdy

and this gives the desired equality.
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